intake spark Documentation
Release 0.1.2+0.9360d91c.dirty

Joseph Crail

Jul 02, 2021

CONTENTS:

1 Quickstart 3
1.1 Installation e e e e e e e 3
L2 USage . . . v v o e e e e e e e e e 3

2 API Reference S

3 Indices and tables 11

Index 13

intake_spark Documentation, Release 0.1.2+0.g360d91c.dirty

This package enables the Intake data access and catalog system to read from Apache Spark.

This package provides Spark RDD and DataFrame drivers, and passes chained set of arguments on to pyspark, and
there is also a driver to view the Spark catalog (often with tables provided by Hive) as Intake entries.

Be sure to read the quickstart on how to provide the context/parameters required by Spark and how to phrase a Spark
loading invocation for Intake.

This package is required by Intake for use of any .to_spark() methods.

CONTENTS: 1

intake_spark Documentation, Release 0.1.2+0.g360d91c.dirty

2 CONTENTS:

CHAPTER
ONE

QUICKSTART

intake-spark provides quick and easy access to data via Apache Spark

1.1 Installation

To use this plugin for intake, install with the following command:

conda install -c conda-forge intake-spark

1.2 Usage

1.2.1 Establishing a Context

Operations on a Spark cluster are achieved via a “context”, which is a python-side client to the remote system. All use
of this package require a valid context in order to work. There are two ways to establish the context:

* use the function intake_spark.base.SparkHolder.set_class_session(), passing for context= and
session= the respective existing objects that have been created previously using conventional means. In
this case, Spark connection-specific parameters are not encoded in the catalog. Since intake-spark uses
getOrCreate(), the existence of the objects should be enough for them to be picked up at data access time, but
we still recommend calling the set function explicitly. Note that if only using RDDs and no SQI functionality,
the session need not be created or provided.

* the same function can also take a set of parameters, in which case intake-spark will attempt to create the context
and session for you, passing the parameters (master, app_name, executor_env, spark_home and config param-
eters) on to Spark. In this case, the parameters can be stored in a catalog (the context_kwargs parameter, a
dictionary). If providing an empty set of parameters, Spark will create the default local context, which is useful
only for testing.

in-code example

from intake_spark.base import SparkHolder

import intake

SparkHolder.set_class_session(master="'spark://myhost:7077', app_name='intake', hive=True)

http://spark.apache.org/docs/latest/
https://github.com/ContinuumIO/intake

intake_spark Documentation, Release 0.1.2+0.g360d91c.dirty

1.2.2 Encoding Spark calls

Spark calls are often expressed as a chain of attribute look-ups with some being called as methods with arguments. To
encode these for Intake, we make each stage of the chain an element in a list, starting from the Context or Session for
the RDD and DataFrame versions of the driver. For example, the following encodes sc.textfile('s3://bucket/
files*.txt'),i.e., a single element of attribute lookup

source = intake.open_spark_ rdd([
['textFile', ['s3://bucket/files*.txt',]],
[‘map', [len,]]
D

rdd = source.to_spark()

Here rdd will be a pySpark RDD instance.

A more complicated example, for encoding spark.read.option("mergeSchema", "true").parquet("data/
test_table") for use with Intake

source = intake.open_spark_dataframe([

['read', 1,

['option', ["mergeSchema", "true"]],
['parquet', ["data/test_table",]]

D

df = source.to_spark()

Note that you can pass functions using this formalism, but only encode python built-ins into a YAML file, e.g., len
=> !lpython/name:builtins.len "'.

1.2.3 Using in a catalog

The above example could be expressed in YAML syntax as follows

sources:
spark_dataframe:
args:
args:
- - read
- - option
- - mergeSchema
- "true'
- - parquet

- - data/test_table
context_kwargs:
master: "spark://myhost:7077"
app_name: intake
description: '’
driver: spark_dataframe
metadata: {}

Note the complex nesting pattern, and that in this case we are including arguments for creating an appropriate Spark-
Context and Session on the fly, if one has not already been made.

4 Chapter 1. Quickstart

CHAPTER
TWO

API REFERENCE

intake_spark.spark_sources. SparkRDD(*args, A reference to an RDD definition in Spark

)
intake_spark.spark_sources. A reference to a DataFrame definition in Spark
SparkDataFrame(...)
intake_spark.spark_cat. Intake automatically-generate catalog for tables stored in
SparkTablesCatalog(...) Spark

class intake_spark.spark_sources.SparkRDD (*args, **kwargs)
A reference to an RDD definition in Spark

RDDs are list-of-things objects, evaluated lazily in Spark.

Examples

>>> args = [('textFile', ('text.*.files',)),
('map", (len,))]

>>> context = {'master': 'spark://master.node:7077'}

>>> source = SparkRDD(args, context)

The output of source.to_spark() is an RDD object holding the lengths of the lines of the input files.
Attributes
cache
cache_dirs
cat
classname
description
dtype
entry
gui Source GUI, with parameter selection and plotting
has_been_persisted
hvplot Returns a hvPlot object to provide a high-level plotting APIL.
is_persisted

plot Returns a hvPlot object to provide a high-level plotting API.

intake_spark Documentation, Release 0.1.2+0.g360d91c.dirty

plots List custom associated quick-plots

shape

Methods

__call__(**kwargs)

Create a new instance of this source with altered ar-
guments

close()

Close open resources corresponding to this data
source.

configure_new(**kwargs)

Create a new instance of this source with altered ar-
guments

describe() Description from the entry spec

discover() Open resource and populate the source attributes.

export(path, **kwargs) Save this data for sharing with other people

get(**kwargs) Create a new instance of this source with altered ar-
guments

persist([ttl]) Save data from this source to local persistent storage

read() Materialise the whole RDD into a list of objects

read_chunked()

Return iterator over container fragments of data
source

read_partition(i)

Returns one of the partitions of the RDD as a list of
objects

to_dask() Return a dask container for this data source
to_spark() Return the spark object for this data, an RDD
yaml() Return YAML representation of this data-source
get_persisted
set_cache_dir
read()

Materialise the whole RDD into a list of objects

read_partition(i)
Returns one of the partitions of the RDD as a list of objects

to_spark()
Return the spark object for this data, an RDD

class intake_spark.spark_sources.SparkDataFrame (*args, **kwargs)
A reference to a DataFrame definition in Spark

DataFrames are tabular spark objects containing a heterogeneous set of columns and potentially a large number
of rows. They are similar in concept to Pandas or Dask data-frames. The Spark variety produced by this driver
will be a handle to a lazy object, where computation will be managed by Spark.

6 Chapter 2. API Reference

intake_spark Documentation, Release 0.1.2+0.g360d91c.dirty

Examples

>>> args = [

['read',],

["format', ['csv', 11,

['option', ['header', 'true'l]],

['load', ['data.*.csv', 1]

]
>>> context = {'master': 'spark://master.node:7077'}
>>> source = SparkDataFrame(args, context)

The output of source.to_spark() contains a spark object pointing to the parsed contents of the indicated CSV files
Attributes
cache
cache_dirs
cat
classname
description
dtype
entry
gui Source GUI, with parameter selection and plotting
has_been_persisted
hvplot Returns a hvPlot object to provide a high-level plotting API.
is_persisted
plot Returns a hvPlot object to provide a high-level plotting API.

plots List custom associated quick-plots

shape
Methods

__call__(**kwargs) Create a new instance of this source with altered ar-
guments

close() Close open resources corresponding to this data
source.

configure_new(**kwargs) Create a new instance of this source with altered ar-
guments

describe() Description from the entry spec

discover() Open resource and populate the source attributes.

export(path, **kwargs) Save this data for sharing with other people

get(**kwargs) Create a new instance of this source with altered ar-
guments

persist([ttl]) Save data from this source to local persistent storage

continues on next page

intake_spark Documentation, Release 0.1.2+0.g360d91c.dirty

Table 3 - continued from previous page

read() Read all of the data into an in-memory Pandas data-
frame

read_chunked() Return iterator over container fragments of data
source

read_partition(i) Returns one partition of the data as a pandas data-
frame

to_dask() Return a dask container for this data source

to_spark() Return the Spark object for this data, a DataFrame

yaml() Return YAML representation of this data-source

get_persisted
set_cache_dir

read()
Read all of the data into an in-memory Pandas data-frame

read_partition(i)
Returns one partition of the data as a pandas data-frame

to_spark()
Return the Spark object for this data, a DataFrame

class intake_spark.spark_cat.SparkTablesCatalog(*args, **kwargs)
Intake automatically-generate catalog for tables stored in Spark

This driver will query Spark’s Catalog object for any tables, and create an entry for each which, when accessed,
will instantiate SparkDataFrame sources. Commonly, these table definitions will come from Hive.

Attributes
auth
cache
cache_dirs
cat
classname
description
dtype
entry
gui Source GUI, with parameter selection and plotting
has_been_persisted
hvplot Returns a hvPlot object to provide a high-level plotting API.
is_persisted
kwargs
plot Returns a hvPlot object to provide a high-level plotting API.
plots List custom associated quick-plots

shape

8 Chapter 2. API Reference

intake_spark Documentation, Release 0.1.2+0.g360d91c.dirty

Methods

__call__(**kwargs)

Create a new instance of this source with altered ar-

guments

close() Close open resources corresponding to this data
source.

configure_new(**kwargs) Create a new instance of this source with altered ar-
guments

describe() Description from the entry spec

discover() Open resource and populate the source attributes.

export(path, **kwargs) Save this data for sharing with other people

filter(func) Create a Catalog of a subset of entries based on a con-

dition

force_reload()

Imperative reload data now

from_dict(entries, **kwargs)

Create Catalog from the given set of entries

get(**kwargs)

Create a new instance of this source with altered ar-
guments

items() Get an iterator over (key, source) tuples for the cata-
log entries.

keys() Entry names in this catalog as an iterator (alias for
_ iter_)

persist([ttl]) Save data from this source to local persistent storage

pop(key) Remove entry from catalog and return it

read() Load entire dataset into a container and return it

read_chunked() Return iterator over container fragments of data
source

read_partition(i) Return a part of the data corresponding to i-th parti-
tion.

reload()

Reload catalog if sufficient time has passed

save(url[, storage_options])

Output this catalog to a file as YAML

serialize()

Produce YAML version of this catalog.

to_dask() Return a dask container for this data source
to_spark() Provide an equivalent data object in Apache Spark
values() Get an iterator over the sources for catalog entries.

walk([sofar, prefix, depth])

Get all entries in this catalog and sub-catalogs

yaml()

Return YAML representation of this data-source

get_persisted
search
set_cache_dir

intake_spark Documentation, Release 0.1.2+0.g360d91c.dirty

10 Chapter 2. API Reference

CHAPTER
THREE

INDICES AND TABLES

* genindex
* modindex

¢ search

11

intake_spark Documentation, Release 0.1.2+0.g360d91c.dirty

12 Chapter 3. Indices and tables

R

read() (intake_spark.spark_sources.SparkDataFrame

method), 8

read() (intake_spark.spark_sources.SparkRDD
method), 6

read_partition() (in-
take_spark.spark_sources.SparkDataFrame
method), 8

read_partition() (in-
take_spark.spark_sources.SparkRDD method),
6

S

SparkDataFrame (class in intake_spark.spark_sources),

6
SparkRDD (class in intake_spark.spark_sources), 5
SparkTablesCatalog (class in in-

take_spark.spark_cat), 8

T

to_spark) (intake_spark.spark_sources.SparkDataFrame

method), 8
to_spark() (intake_spark.spark_sources.SparkRDD
method), 6

INDEX

13

	Quickstart
	Installation
	Usage
	Establishing a Context
	Encoding Spark calls
	Using in a catalog

	API Reference
	Indices and tables
	Index

